问题

在Java中,迭代字符串中所有字符的最快方法是什么,这:

String str = "a really, really long string";
for (int i = 0, n = str.length(); i < n; i++) {
    char c = str.charAt(i);
}

或这个:

char[] chars = str.toCharArray();
for (int i = 0, n = chars.length; i < n; i++) {
    char c = chars[i];
}

编辑:
我想知道的是,在长时间迭代中反复调用charAt方法的成本是否小于或大于在开始时执行单个调用toCharArray然后在迭代期间直接访问数组的成本。

如果有人可以为不同的字符串长度提供强大的基准测试,考虑到JIT预热时间,JVM启动时间等,而不仅仅是两次调用System.currentTimeMillis()之间的差异,那就太棒了。


#1 热门回答(322 赞)

第一次更新:在生产环境中尝试之前(不建议),首先阅读:http://www.javaspecialists.eu/archive/Issue237.html从Java 9开始,所描述的解决方案将不再起作用,因为现在Java默认将字符串存储为byte []。

第二次更新:截至2016-10-25,在我的AMDx64 8core和源1.8上,使用'charAt'和字段访问没有区别。似乎jvm已经过充分优化,可以内联和简化任何'string.charAt(n)'调用。

这一切都取决于String被检查的长度。如果问题是,对于字符串,检查字符串的最快方法是使用反射来访问字符串的backingchar[]

使用JDK 8(win32和win64)在64位AMD Phenom II 4核心955 @ 3.2 GHZ(在客户端模式和服务器模式下)使用9种不同技术(见下文!)的完全随机基准测试表明,使用String.charAt(n)对于小字符串来说是最快的并且使用reflection访问String后备数组的速度几乎是大字符串的两倍。

本实验

  • 尝试了9种不同的优化技术。
  • 所有字符串内容都是随机的
  • 对于从0,1,2,4,8,16等开始的两个倍数的字符串大小进行测试。
  • 每个字符串大小的测试完成1000次
  • 每次测试都随机排列。换句话说,测试在每次完成时以随机顺序进行,超过1000次。
  • 整个测试套件向前和向后完成,以显示JVM预热对优化和时间的影响。
  • 整个套件完成两次,一次处于客户端模式,另一种处于服务器模式。

#结论

-client模式(32位)

对于strings**,长度为1到256个字符,长度为**,调用string.charAt(i)wins,平均处理速度为每秒1340万到5.88亿个字符。

此外,它总体上提高了5.5%(客户端)和13.9%(服务器),如下所示:

for (int i = 0; i < data.length(); i++) {
        if (data.charAt(i) <= ' ') {
            doThrow();
        }
    }

比这个本地最终长度变量:

final int len = data.length();
    for (int i = 0; i < len; i++) {
        if (data.charAt(i) <= ' ') {
            doThrow();
        }
    }

对于长字符串,512到256K字符长度,使用反射来访问String的后备阵列是最快的.这种技术几乎快两倍as String.charAt(i)(快178%)。该范围内的平均速度为每秒11.11亿个字符。

必须提前获取Field,然后可以在库中的不同字符串上重用它。有趣的是,与上面的代码不同,使用Field访问,拥有本地最终长度变量比在循环检查中使用'chars.length'快9%。以下是Field访问可以设置为最快的方式:

final Field field = String.class.getDeclaredField("value");
   field.setAccessible(true);

   try {
       final char[] chars = (char[]) field.get(data);
       final int len = chars.length;
       for (int i = 0; i < len; i++) {
           if (chars[i] <= ' ') {
               doThrow();
           }
       }
       return len;
   } catch (Exception ex) {
       throw new RuntimeException(ex);
   }

##关于-server模式的特别评论

在我的AMD 64机器上的64位Java机器上,在服务器模式下,字段访问开始在32个字符长度字符串之后获胜。在客户端模式下,直到512个字符长度才能看到。

另外值得注意的是,当我在服务器模式下运行JDK 8(32位版本)时,大字符串和小字符串的整体性能降低了7%。这是2013年12月121日JDK 8早期发布的版本。所以,就目前而言,似乎32位服务器模式比32位客户端模式慢。

话虽如此......似乎唯一值得调用的服务器模式是在64位机器上。否则它实际上会妨碍性能。

对于在AMD64中运行于-server mode的32位构建,我可以这样说:

  • String.charAt(i)总体而言是明显的赢家。虽然大小在8到512个字符之间,但在'新''重用'和'字段'中有赢家。
  • String.charAt(i)在客户端模式下快45%
  • 对于客户端模式下的大字符串,字段访问速度是其两倍。

另外值得一提的是,String.chars()(Stream和并行版)是一个半身像。比任何其他方式慢。 StreamsAPI是执行常规字符串操作的一种相当慢的方式。

##愿望清单

Java String可以让谓词接受优化方法,例如contains(谓词),forEach(使用者),forEachWithIndex(使用者)。因此,无需用户知道长度或重复调用String方法,这些可以帮助解析librariesbeep-beep beepspeedup。

继续做梦:)

快乐的弦乐!

〜SH

##测试使用以下9种方法测试字符串是否存在空格:

"charAt1" - 以常用方式检查字符串内容:

int charAtMethod1(final String data) {
    final int len = data.length();
    for (int i = 0; i < len; i++) {
        if (data.charAt(i) <= ' ') {
            doThrow();
        }
    }
    return len;
}

"charAt2" - 与上面相同但是使用String.length()不要为LENGTh制作一个最终的本地int

int charAtMethod2(final String data) {
    for (int i = 0; i < data.length(); i++) {
        if (data.charAt(i) <= ' ') {
            doThrow();
        }
    }
    return data.length();
}

"流" - 使用新的JAVA-8 String的IntStream并通过预测进行检查

int streamMethod(final String data, final IntPredicate predicate) {
    if (data.chars().anyMatch(predicate)) {
        doThrow();
    }
    return data.length();
}

"streamPara" - 与上面相同,但是OH-LA-LA - GO PARALLEL !!!

// avoid this at all costs
int streamParallelMethod(final String data, IntPredicate predicate) {
    if (data.chars().parallel().anyMatch(predicate)) {
        doThrow();
    }
    return data.length();
}

"重复使用" - 用字符串内容重新填充可重复使用的字符[]

int reuseBuffMethod(final char[] reusable, final String data) {
    final int len = data.length();
    data.getChars(0, len, reusable, 0);
    for (int i = 0; i < len; i++) {
        if (reusable[i] <= ' ') {
            doThrow();
        }
    }
    return len;
}

"new1" - 从STRING中获取char []的新副本

int newMethod1(final String data) {
    final int len = data.length();
    final char[] copy = data.toCharArray();
    for (int i = 0; i < len; i++) {
        if (copy[i] <= ' ') {
            doThrow();
        }
    }
    return len;
}

"new2" - 与上述相同,但"使用"

int newMethod2(final String data) {
    for (final char c : data.toCharArray()) {
        if (c <= ' ') {
            doThrow();
        }
    }
    return data.length();
}

"field1" - FANCY !!获取STRING'S内部字符[]的字段

int fieldMethod1(final Field field, final String data) {
    try {
        final char[] chars = (char[]) field.get(data);
        final int len = chars.length;
        for (int i = 0; i < len; i++) {
            if (chars[i] <= ' ') {
                doThrow();
            }
        }
        return len;
    } catch (Exception ex) {
        throw new RuntimeException(ex);
    }
}

"field2" - 与上述相同,但使用"FOR-EACH"

int fieldMethod2(final Field field, final String data) {
    final char[] chars;
    try {
        chars = (char[]) field.get(data);
    } catch (Exception ex) {
        throw new RuntimeException(ex);
    }
    for (final char c : chars) {
        if (c <= ' ') {
            doThrow();
        }
    }
    return chars.length;
}

#客户端的复合结果 - 客户模式(前向和后向测试合并)

注意:带有Java 32位的-client模式和带有Java 64位的-server模式与我的AMD64机器上的相同。

Size     WINNER  charAt1 charAt2  stream streamPar   reuse    new1    new2  field1  field2
1        charAt    77.0     72.0   462.0     584.0   127.5    89.5    86.0   159.5   165.0
2        charAt    38.0     36.5   284.0   32712.5    57.5    48.3    50.3    89.0    91.5
4        charAt    19.5     18.5   458.6    3169.0    33.0    26.8    27.5    54.1    52.6
8        charAt     9.8      9.9   100.5    1370.9    17.3    14.4    15.0    26.9    26.4
16       charAt     6.1      6.5    73.4     857.0     8.4     8.2     8.3    13.6    13.5
32       charAt     3.9      3.7    54.8     428.9     5.0     4.9     4.7     7.0     7.2
64       charAt     2.7      2.6    48.2     232.9     3.0     3.2     3.3     3.9     4.0
128      charAt     2.1      1.9    43.7     138.8     2.1     2.6     2.6     2.4     2.6
256      charAt     1.9      1.6    42.4      90.6     1.7     2.1     2.1     1.7     1.8
512      field1     1.7      1.4    40.6      60.5     1.4     1.9     1.9     1.3     1.4
1,024    field1     1.6      1.4    40.0      45.6     1.2     1.9     2.1     1.0     1.2
2,048    field1     1.6      1.3    40.0      36.2     1.2     1.8     1.7     0.9     1.1
4,096    field1     1.6      1.3    39.7      32.6     1.2     1.8     1.7     0.9     1.0
8,192    field1     1.6      1.3    39.6      30.5     1.2     1.8     1.7     0.9     1.0
16,384   field1     1.6      1.3    39.8      28.4     1.2     1.8     1.7     0.8     1.0
32,768   field1     1.6      1.3    40.0      26.7     1.3     1.8     1.7     0.8     1.0
65,536   field1     1.6      1.3    39.8      26.3     1.3     1.8     1.7     0.8     1.0
131,072  field1     1.6      1.3    40.1      25.4     1.4     1.9     1.8     0.8     1.0
262,144  field1     1.6      1.3    39.6      25.2     1.5     1.9     1.9     0.8     1.0

#SERVOS的复合结果 - 服务器模式(前向和后向测试相结合)

注意:这是在AMD64上以服务器模式运行的Java 32位的测试。 Java 64位的服务器模式与客户端模式下的Java 32位相同,只是Field访问在32个字符大小后开始获胜。

Size     WINNER  charAt1 charAt2  stream streamPar   reuse    new1    new2  field1  field2
1        charAt     74.5    95.5   524.5     783.0    90.5   102.5    90.5   135.0   151.5
2        charAt     48.5    53.0   305.0   30851.3    59.3    57.5    52.0    88.5    91.8
4        charAt     28.8    32.1   132.8    2465.1    37.6    33.9    32.3    49.0    47.0
8          new2     18.0    18.6    63.4    1541.3    18.5    17.9    17.6    25.4    25.8
16         new2     14.0    14.7   129.4    1034.7    12.5    16.2    12.0    16.0    16.6
32         new2      7.8     9.1    19.3     431.5     8.1     7.0     6.7     7.9     8.7
64        reuse      6.1     7.5    11.7     204.7     3.5     3.9     4.3     4.2     4.1
128       reuse      6.8     6.8     9.0     101.0     2.6     3.0     3.0     2.6     2.7
256      field2      6.2     6.5     6.9      57.2     2.4     2.7     2.9     2.3     2.3
512       reuse      4.3     4.9     5.8      28.2     2.0     2.6     2.6     2.1     2.1
1,024    charAt      2.0     1.8     5.3      17.6     2.1     2.5     3.5     2.0     2.0
2,048    charAt      1.9     1.7     5.2      11.9     2.2     3.0     2.6     2.0     2.0
4,096    charAt      1.9     1.7     5.1       8.7     2.1     2.6     2.6     1.9     1.9
8,192    charAt      1.9     1.7     5.1       7.6     2.2     2.5     2.6     1.9     1.9
16,384   charAt      1.9     1.7     5.1       6.9     2.2     2.5     2.5     1.9     1.9
32,768   charAt      1.9     1.7     5.1       6.1     2.2     2.5     2.5     1.9     1.9
65,536   charAt      1.9     1.7     5.1       5.5     2.2     2.4     2.4     1.9     1.9
131,072  charAt      1.9     1.7     5.1       5.4     2.3     2.5     2.5     1.9     1.9
262,144  charAt      1.9     1.7     5.1       5.1     2.3     2.5     2.5     1.9     1.9

#完全可以运行的程序代码

(要在Java 7及更早版本上进行测试,请删除两个流测试)

import java.lang.reflect.Field;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
import java.util.function.IntPredicate;

/**
 * @author Saint Hill <http://stackoverflow.com/users/1584255/saint-hill>
 */
public final class TestStrings {

    // we will not test strings longer than 512KM
    final int MAX_STRING_SIZE = 1024 * 256;

    // for each string size, we will do all the tests
    // this many times
    final int TRIES_PER_STRING_SIZE = 1000;

    public static void main(String[] args) throws Exception {
        new TestStrings().run();
    }

    void run() throws Exception {

        // double the length of the data until it reaches MAX chars long
        // 0,1,2,4,8,16,32,64,128,256 ... 
        final List<Integer> sizes = new ArrayList<>();
        for (int n = 0; n <= MAX_STRING_SIZE; n = (n == 0 ? 1 : n * 2)) {
            sizes.add(n);
        }

        // CREATE RANDOM (FOR SHUFFLING ORDER OF TESTS)
        final Random random = new Random();

        System.out.println("Rate in nanoseconds per character inspected.");
        System.out.printf("==== FORWARDS (tries per size: %s) ==== \n", TRIES_PER_STRING_SIZE);

        printHeadings(TRIES_PER_STRING_SIZE, random);

        for (int size : sizes) {
            reportResults(size, test(size, TRIES_PER_STRING_SIZE, random));
        }

        // reverse order or string sizes
        Collections.reverse(sizes);

        System.out.println("");
        System.out.println("Rate in nanoseconds per character inspected.");
        System.out.printf("==== BACKWARDS (tries per size: %s) ==== \n", TRIES_PER_STRING_SIZE);

        printHeadings(TRIES_PER_STRING_SIZE, random);

        for (int size : sizes) {
            reportResults(size, test(size, TRIES_PER_STRING_SIZE, random));

        }
    }

    ///
    ///
    ///  METHODS OF CHECKING THE CONTENTS
    ///  OF A STRING. ALWAYS CHECKING FOR
    ///  WHITESPACE (CHAR <=' ')
    ///  
    ///
    // CHECK THE STRING CONTENTS
    int charAtMethod1(final String data) {
        final int len = data.length();
        for (int i = 0; i < len; i++) {
            if (data.charAt(i) <= ' ') {
                doThrow();
            }
        }
        return len;
    }

    // SAME AS ABOVE BUT USE String.length()
    // instead of making a new final local int 
    int charAtMethod2(final String data) {
        for (int i = 0; i < data.length(); i++) {
            if (data.charAt(i) <= ' ') {
                doThrow();
            }
        }
        return data.length();
    }

    // USE new Java-8 String's IntStream
    // pass it a PREDICATE to do the checking
    int streamMethod(final String data, final IntPredicate predicate) {
        if (data.chars().anyMatch(predicate)) {
            doThrow();
        }
        return data.length();
    }

    // OH LA LA - GO PARALLEL!!!
    int streamParallelMethod(final String data, IntPredicate predicate) {
        if (data.chars().parallel().anyMatch(predicate)) {
            doThrow();
        }
        return data.length();
    }

    // Re-fill a resuable char[] with the contents
    // of the String's char[]
    int reuseBuffMethod(final char[] reusable, final String data) {
        final int len = data.length();
        data.getChars(0, len, reusable, 0);
        for (int i = 0; i < len; i++) {
            if (reusable[i] <= ' ') {
                doThrow();
            }
        }
        return len;
    }

    // Obtain a new copy of char[] from String
    int newMethod1(final String data) {
        final int len = data.length();
        final char[] copy = data.toCharArray();
        for (int i = 0; i < len; i++) {
            if (copy[i] <= ' ') {
                doThrow();
            }
        }
        return len;
    }

    // Obtain a new copy of char[] from String
    // but use FOR-EACH
    int newMethod2(final String data) {
        for (final char c : data.toCharArray()) {
            if (c <= ' ') {
                doThrow();
            }
        }
        return data.length();
    }

    // FANCY!
    // OBTAIN FIELD FOR ACCESS TO THE STRING'S
    // INTERNAL CHAR[]
    int fieldMethod1(final Field field, final String data) {
        try {
            final char[] chars = (char[]) field.get(data);
            final int len = chars.length;
            for (int i = 0; i < len; i++) {
                if (chars[i] <= ' ') {
                    doThrow();
                }
            }
            return len;
        } catch (Exception ex) {
            throw new RuntimeException(ex);
        }
    }

    // same as above but use FOR-EACH
    int fieldMethod2(final Field field, final String data) {
        final char[] chars;
        try {
            chars = (char[]) field.get(data);
        } catch (Exception ex) {
            throw new RuntimeException(ex);
        }
        for (final char c : chars) {
            if (c <= ' ') {
                doThrow();
            }
        }
        return chars.length;
    }

    /**
     *
     * Make a list of tests. We will shuffle a copy of this list repeatedly
     * while we repeat this test.
     *
     * @param data
     * @return
     */
    List<Jobber> makeTests(String data) throws Exception {
        // make a list of tests
        final List<Jobber> tests = new ArrayList<Jobber>();

        tests.add(new Jobber("charAt1") {
            int check() {
                return charAtMethod1(data);
            }
        });

        tests.add(new Jobber("charAt2") {
            int check() {
                return charAtMethod2(data);
            }
        });

        tests.add(new Jobber("stream") {
            final IntPredicate predicate = new IntPredicate() {
                public boolean test(int value) {
                    return value <= ' ';
                }
            };

            int check() {
                return streamMethod(data, predicate);
            }
        });

        tests.add(new Jobber("streamPar") {
            final IntPredicate predicate = new IntPredicate() {
                public boolean test(int value) {
                    return value <= ' ';
                }
            };

            int check() {
                return streamParallelMethod(data, predicate);
            }
        });

        // Reusable char[] method
        tests.add(new Jobber("reuse") {
            final char[] cbuff = new char[MAX_STRING_SIZE];

            int check() {
                return reuseBuffMethod(cbuff, data);
            }
        });

        // New char[] from String
        tests.add(new Jobber("new1") {
            int check() {
                return newMethod1(data);
            }
        });

        // New char[] from String
        tests.add(new Jobber("new2") {
            int check() {
                return newMethod2(data);
            }
        });

        // Use reflection for field access
        tests.add(new Jobber("field1") {
            final Field field;

            {
                field = String.class.getDeclaredField("value");
                field.setAccessible(true);
            }

            int check() {
                return fieldMethod1(field, data);
            }
        });

        // Use reflection for field access
        tests.add(new Jobber("field2") {
            final Field field;

            {
                field = String.class.getDeclaredField("value");
                field.setAccessible(true);
            }

            int check() {
                return fieldMethod2(field, data);
            }
        });

        return tests;
    }

    /**
     * We use this class to keep track of test results
     */
    abstract class Jobber {

        final String name;
        long nanos;
        long chars;
        long runs;

        Jobber(String name) {
            this.name = name;
        }

        abstract int check();

        final double nanosPerChar() {
            double charsPerRun = chars / runs;
            long nanosPerRun = nanos / runs;
            return charsPerRun == 0 ? nanosPerRun : nanosPerRun / charsPerRun;
        }

        final void run() {
            runs++;
            long time = System.nanoTime();
            chars += check();
            nanos += System.nanoTime() - time;
        }
    }

    // MAKE A TEST STRING OF RANDOM CHARACTERS A-Z
    private String makeTestString(int testSize, char start, char end) {
        Random r = new Random();
        char[] data = new char[testSize];
        for (int i = 0; i < data.length; i++) {
            data[i] = (char) (start + r.nextInt(end));
        }
        return new String(data);
    }

    // WE DO THIS IF WE FIND AN ILLEGAL CHARACTER IN THE STRING
    public void doThrow() {
        throw new RuntimeException("Bzzzt -- Illegal Character!!");
    }

    /**
     * 1. get random string of correct length 2. get tests (List<Jobber>) 3.
     * perform tests repeatedly, shuffling each time
     */
    List<Jobber> test(int size, int tries, Random random) throws Exception {
        String data = makeTestString(size, 'A', 'Z');
        List<Jobber> tests = makeTests(data);
        List<Jobber> copy = new ArrayList<>(tests);
        while (tries-- > 0) {
            Collections.shuffle(copy, random);
            for (Jobber ti : copy) {
                ti.run();
            }
        }
        // check to make sure all char counts the same
        long runs = tests.get(0).runs;
        long count = tests.get(0).chars;
        for (Jobber ti : tests) {
            if (ti.runs != runs && ti.chars != count) {
                throw new Exception("Char counts should match if all correct algorithms");
            }
        }
        return tests;
    }

    private void printHeadings(final int TRIES_PER_STRING_SIZE, final Random random) throws Exception {
        System.out.print("  Size");
        for (Jobber ti : test(0, TRIES_PER_STRING_SIZE, random)) {
            System.out.printf("%9s", ti.name);
        }
        System.out.println("");
    }

    private void reportResults(int size, List<Jobber> tests) {
        System.out.printf("%6d", size);
        for (Jobber ti : tests) {
            System.out.printf("%,9.2f", ti.nanosPerChar());
        }
        System.out.println("");
    }
}

#2 热门回答(12 赞)

这只是微观优化,你不必担心。

char[] chars = str.toCharArray();

返回47444450字符数组的副本(在JDK中,它通过调用System.arrayCopy返回字符的副本)。

除此之外,str.charAt()通常会检查索引是否确实在边界内并返回数组索引中的字符。

第一个不会在JVM中创建额外的内存。


#3 热门回答(8 赞)

只是为了好奇,并与圣希尔的答案进行比较。
如果需要处理大量数据,则不应在客户端模式下使用JVM。客户端模式不适用于优化。

让我们在客户端模式和服务器模式下使用JVM比较@Saint Hill基准测试的结果。

Core2Quad Q6600 G0 @ 2.4GHz
JavaSE 1.7.0_40

参见:Real differences between "java -server" and "java -client"?
客户端模式:

len =      2:    111k charAt(i),  105k cbuff[i],   62k new[i],   17k field access.   (chars/ms) 
len =      4:    285k charAt(i),  166k cbuff[i],  114k new[i],   43k field access.   (chars/ms) 
len =      6:    315k charAt(i),  230k cbuff[i],  162k new[i],   69k field access.   (chars/ms) 
len =      8:    333k charAt(i),  275k cbuff[i],  181k new[i],   85k field access.   (chars/ms) 
len =     12:    342k charAt(i),  342k cbuff[i],  222k new[i],  117k field access.   (chars/ms) 
len =     16:    363k charAt(i),  347k cbuff[i],  275k new[i],  152k field access.   (chars/ms) 
len =     20:    363k charAt(i),  392k cbuff[i],  289k new[i],  180k field access.   (chars/ms) 
len =     24:    375k charAt(i),  428k cbuff[i],  311k new[i],  205k field access.   (chars/ms) 
len =     28:    378k charAt(i),  474k cbuff[i],  341k new[i],  233k field access.   (chars/ms) 
len =     32:    376k charAt(i),  492k cbuff[i],  340k new[i],  251k field access.   (chars/ms) 
len =     64:    374k charAt(i),  551k cbuff[i],  374k new[i],  367k field access.   (chars/ms) 
len =    128:    385k charAt(i),  624k cbuff[i],  415k new[i],  509k field access.   (chars/ms) 
len =    256:    390k charAt(i),  675k cbuff[i],  436k new[i],  619k field access.   (chars/ms) 
len =    512:    394k charAt(i),  703k cbuff[i],  439k new[i],  695k field access.   (chars/ms) 
len =   1024:    395k charAt(i),  718k cbuff[i],  462k new[i],  742k field access.   (chars/ms) 
len =   2048:    396k charAt(i),  725k cbuff[i],  471k new[i],  767k field access.   (chars/ms) 
len =   4096:    396k charAt(i),  727k cbuff[i],  459k new[i],  780k field access.   (chars/ms) 
len =   8192:    397k charAt(i),  712k cbuff[i],  446k new[i],  772k field access.   (chars/ms)

服务器模式:

len =      2:     86k charAt(i),   41k cbuff[i],   46k new[i],   80k field access.   (chars/ms) 
len =      4:    571k charAt(i),  250k cbuff[i],   97k new[i],  222k field access.   (chars/ms) 
len =      6:    666k charAt(i),  333k cbuff[i],  125k new[i],  315k field access.   (chars/ms) 
len =      8:    800k charAt(i),  400k cbuff[i],  181k new[i],  380k field access.   (chars/ms) 
len =     12:    800k charAt(i),  521k cbuff[i],  260k new[i],  545k field access.   (chars/ms) 
len =     16:    800k charAt(i),  592k cbuff[i],  296k new[i],  640k field access.   (chars/ms) 
len =     20:    800k charAt(i),  666k cbuff[i],  408k new[i],  800k field access.   (chars/ms) 
len =     24:    800k charAt(i),  705k cbuff[i],  452k new[i],  800k field access.   (chars/ms) 
len =     28:    777k charAt(i),  736k cbuff[i],  368k new[i],  933k field access.   (chars/ms) 
len =     32:    800k charAt(i),  780k cbuff[i],  571k new[i],  969k field access.   (chars/ms) 
len =     64:    800k charAt(i),  901k cbuff[i],  800k new[i],  1306k field access.   (chars/ms) 
len =    128:    1084k charAt(i),  888k cbuff[i],  633k new[i],  1620k field access.   (chars/ms) 
len =    256:    1122k charAt(i),  966k cbuff[i],  729k new[i],  1790k field access.   (chars/ms) 
len =    512:    1163k charAt(i),  1007k cbuff[i],  676k new[i],  1910k field access.   (chars/ms) 
len =   1024:    1179k charAt(i),  1027k cbuff[i],  698k new[i],  1954k field access.   (chars/ms) 
len =   2048:    1184k charAt(i),  1043k cbuff[i],  732k new[i],  2007k field access.   (chars/ms) 
len =   4096:    1188k charAt(i),  1049k cbuff[i],  742k new[i],  2031k field access.   (chars/ms) 
len =   8192:    1157k charAt(i),  1032k cbuff[i],  723k new[i],  2048k field access.   (chars/ms)

结论:
如你所见,服务器模式要快得多。


原文链接