首页 文章

Clojure中快速素数生成

提问于
浏览
47

我一直在努力解决Clojure中的问题,以便变得更好,而且我已经遇到了几次素数 . 我的问题是它只是花了太长时间 . 我希望有人可以帮我找到一种以Clojure-y方式做到这一点的有效方法 .

当我拳头做到这一点时,我粗暴地强迫它 . 这很容易做到 . 但是计算10001个素数在Xeon 2.33GHz上用了2分钟,对规则来说太长了,一般来说太长了 . 这是算法:

(defn next-prime-slow
    "Find the next prime number, checking against our already existing list"
    ([sofar guess]
        (if (not-any? #(zero? (mod guess %)) sofar)
            guess                         ; Then we have a prime
            (recur sofar (+ guess 2)))))  ; Try again                               

(defn find-primes-slow
    "Finds prime numbers, slowly"
    ([]
        (find-primes-slow 10001 [2 3]))   ; How many we need, initial prime seeds
    ([needed sofar]
        (if (<= needed (count sofar))
            sofar                         ; Found enough, we're done
            (recur needed (concat sofar [(next-prime-slow sofar (last sofar))])))))

通过将一些额外的规则考虑在内的新例程替换next-prime-slow(比如6n / - 1属性),我能够将速度提高到大约70秒 .

接下来,我试着在纯粹的Clojure中筛选出Eratosthenes . 我不认为我得到了所有的错误,但我放弃了,因为它太慢了(我认为甚至比上面更糟糕) .

(defn clean-sieve
    "Clean the sieve of what we know isn't prime based"
    [seeds-left sieve]
    (if (zero? (count seeds-left))
        sieve              ; Nothing left to filter the list against
        (recur
            (rest seeds-left)    ; The numbers we haven't checked against
            (filter #(> (mod % (first seeds-left)) 0) sieve)))) ; Filter out multiples

(defn self-clean-sieve  ; This seems to be REALLY slow
    "Remove the stuff in the sieve that isn't prime based on it's self"
    ([sieve]
        (self-clean-sieve (rest sieve) (take 1 sieve)))
    ([sieve clean]
        (if (zero? (count sieve))
            clean
            (let [cleaned (filter #(> (mod % (last clean)) 0) sieve)]
                (recur (rest cleaned) (into clean [(first cleaned)]))))))

(defn find-primes
    "Finds prime numbers, hopefully faster"
    ([]
        (find-primes 10001 [2]))
    ([needed seeds]
        (if (>= (count seeds) needed)
            seeds        ; We have enough
            (recur       ; Recalculate
                needed
                (into
                    seeds    ; Stuff we've already found
                    (let [start (last seeds)
                            end-range (+ start 150000)]   ; NOTE HERE
                        (reverse                                                
                            (self-clean-sieve
                            (clean-sieve seeds (range (inc start) end-range))))))))))

这是不好的 . 如果数字150000较小,它还会导致堆栈溢出 . 尽管事实上我正在使用复发 . 那可能是我的错 .

接下来,我尝试使用Java ArrayList上的Java方法筛选 . 这需要相当多的时间和记忆 .

我最近的尝试是使用Clojure哈希映射的筛子,在筛子中插入所有数字然后分解不是素数的数字 . 最后,它采用密钥列表,它是它找到的素数 . 找到10000个素数需要大约10-12秒 . 我不确定它是否已经完全调试过了 . 它也是递归的(使用recur和loop),因为我试图成为Lispy .

因此,对于这些问题,问题10(总计2000000以下的所有素数)正在扼杀我 . 我最快的代码提出了正确的答案,但它需要105秒才能完成,并需要相当多的内存(我给它512 MB只是所以我不必大惊小怪) . 我的其他算法花了这么长时间我总是先停止它们 .

我可以使用筛子来快速计算Java或C中的许多质数,而不需要使用太多的内存 . 我知道我必须在我的Clojure / Lisp风格中遗漏导致问题的东西 .

有什么我做错了吗? Clojure对大序列有点慢吗?阅读一些项目的欧拉讨论,人们已经在不到100毫秒的时间内计算了其他Lisps中的前10000个素数 . 我意识到JVM可能会减慢速度并且Clojure相对年轻,但我不希望它有100倍的差异 .

有人可以通过快速的方式启发我来计算Clojure中的素数吗?

14 回答

  • 1

    这是另一种庆祝 Clojure's Java interop 的方法 . 这需要在2.4 Ghz Core 2 Duo上运行374ms(运行单线程) . 我让Java的 BigInteger#isProbablePrime 中的高效 Miller-Rabin 实现处理primality检查 .

    (def certainty 5)
    
    (defn prime? [n]
          (.isProbablePrime (BigInteger/valueOf n) certainty))
    
    (concat [2] (take 10001 
       (filter prime? 
          (take-nth 2 
             (range 1 Integer/MAX_VALUE)))))
    

    对于比这大得多的数字,5的确定性可能不是很好 . 这个确定性等于 96.875% 确定它是黄金时期( 1 - .5^certainty

  • 0

    我意识到这是一个非常古老的问题,但我最近最终寻找相同的东西,这里的链接不是我正在寻找的东西(尽可能限制功能类型,懒洋洋地生成〜每个我想要的素数) .

    我偶然发现了一个很好的F# implementation,所以所有的积分都是他的 . 我只把它移植到Clojure:

    (defn gen-primes "Generates an infinite, lazy sequence of prime numbers"
      []
      (let [reinsert (fn [table x prime]
                       (update-in table [(+ prime x)] conj prime))]
        (defn primes-step [table d]
                     (if-let [factors (get table d)]
                       (recur (reduce #(reinsert %1 d %2) (dissoc table d) factors)
                              (inc d))
                       (lazy-seq (cons d (primes-step (assoc table (* d d) (list d))
                                                     (inc d))))))
        (primes-step {} 2)))
    

    用法很简单

    (->>
      (gen-primes)
      (filter #(< % 2000000)
      ; do what you need with the stuff
    )
    
  • 11

    聚会很晚,但我会举一个例子,使用Java BitSet:

    (defn sieve [n]
      "Returns a BitSet with bits set for each prime up to n"
      (let [bs (new java.util.BitSet n)]
        (.flip bs 2 n)
        (doseq [i (range 4 n 2)] (.clear bs i))
        (doseq [p (range 3 (Math/sqrt n))]
          (if (.get bs p)
            (doseq [q (range (* p p) n (* 2 p))] (.clear bs q))))
        bs))
    

    在2014 Macbook Pro(2.3GHz Core i7)上运行,我得到:

    user=> (time (do (sieve 1e6) nil))
    "Elapsed time: 64.936 msecs"
    
  • 3

    请参见此处的最后一个示例:http://clojuredocs.org/clojure_core/clojure.core/lazy-seq

    ;; An example combining lazy sequences with higher order functions
    ;; Generate prime numbers using Eratosthenes Sieve
    ;; See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
    ;; Note that the starting set of sieved numbers should be
    ;; the set of integers starting with 2 i.e., (iterate inc 2) 
    (defn sieve [s]
      (cons (first s)
            (lazy-seq (sieve (filter #(not= 0 (mod % (first s)))
                                     (rest s))))))
    
    user=> (take 20 (sieve (iterate inc 2)))
    (2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71)
    
  • 2

    这是一个很好而简单的实现:

    http://clj-me.blogspot.com/2008/06/primes.html

    ...但它是为一些1.0之前版本的Clojure编写的 . 请参阅Clojure Contrib中的lazy_seqs,了解与当前语言版本一起使用的版本 .

  • 0
    (defn sieve
      [[p & rst]]
      ;; make sure the stack size is sufficiently large!
      (lazy-seq (cons p (sieve (remove #(= 0 (mod % p)) rst)))))
    
    (def primes (sieve (iterate inc 2)))
    

    在10G堆栈大小的情况下,我在2.1Gz的macbook上在~33秒内获得第1001个素数 .

  • 0

    所以我刚刚开始使用Clojure,是的,这在项目Euler上出现了很多不是吗?我写了一个非常快速的试验分数素数算法,但它并没有真正扩展到每一次分裂变得非常缓慢之前 .

    所以我再次开始,这次使用筛选方法:

    (defn clense
      "Walks through the sieve and nils out multiples of step"
      [primes step i]
      (if (<= i (count primes))
        (recur 
          (assoc! primes i nil)
          step
          (+ i step))
        primes))
    
    (defn sieve-step
      "Only works if i is >= 3"
      [primes i]
      (if (< i (count primes))
        (recur
          (if (nil? (primes i)) primes (clense primes (* 2 i) (* i i)))
          (+ 2 i))
        primes))
    
    (defn prime-sieve
      "Returns a lazy list of all primes smaller than x"
      [x]
      (drop 2 
        (filter (complement nil?)
        (persistent! (sieve-step 
          (clense (transient (vec (range x))) 2 4) 3)))))
    

    用法和速度:

    user=> (time (do (prime-sieve 1E6) nil))
    "Elapsed time: 930.881 msecs
    

    我对速度非常满意:它已经耗尽了2009 MBP上的REPL . 它主要是快速的,因为我完全避开惯用的Clojure,而是像猴子一样环绕 . 它也快了4倍,因为我使用瞬态矢量在筛子上工作而不是完全停留不可改变的 .

    Edit: 经过Will Ness的一些建议/错误修复后,它现在运行得更快 .

  • 29

    这是Scheme中的简单筛子:

    http://telegraphics.com.au/svn/puzzles/trunk/programming-in-scheme/primes-up-to.scm

    这是一个高达10,000的素数运行:

    #;1> (include "primes-up-to.scm")
    ; including primes-up-to.scm ...
    #;2> ,t (primes-up-to 10000)
    0.238s CPU time, 0.062s GC time (major), 180013 mutations, 130/4758 GCs (major/minor)
    (2 3 5 7 11 13...
    
  • 0

    根据Will的评论,这是我对postponed-primes的看法:

    (defn postponed-primes-recursive
      ([]
         (concat (list 2 3 5 7)
                 (lazy-seq (postponed-primes-recursive
                            {}
                            3
                            9
                            (rest (rest (postponed-primes-recursive)))
                            9))))
      ([D p q ps c]
         (letfn [(add-composites
                   [D x s]
                   (loop [a x]
                     (if (contains? D a)
                       (recur (+ a s))
                       (persistent! (assoc! (transient D) a s)))))]
           (loop [D D
                  p p
                  q q
                  ps ps
                  c c]
             (if (not (contains? D c))
               (if (< c q)
                 (cons c (lazy-seq (postponed-primes-recursive D p q ps (+ 2 c))))
                 (recur (add-composites D
                                        (+ c (* 2 p))
                                        (* 2 p))
                        (first ps)
                        (* (first ps) (first ps))
                        (rest ps)
                        (+ c 2)))
               (let [s (get D c)]
                 (recur (add-composites
                         (persistent! (dissoc! (transient D) c))
                         (+ c s)
                         s)
                        p
                        q
                        ps
                        (+ c 2))))))))
    

    初次提交比较:

    这是我尝试将this prime number generator从Python移植到Clojure . 以下返回无限延迟序列 .

    (defn primes
      []
      (letfn [(prime-help
                [foo bar]
                (loop [D foo
                       q bar]
                  (if (nil? (get D q))
                    (cons q (lazy-seq
                             (prime-help
                              (persistent! (assoc! (transient D) (* q q) (list q)))
                              (inc q))))
                    (let [factors-of-q (get D q)
                          key-val (interleave
                                   (map #(+ % q) factors-of-q)
                                   (map #(cons % (get D (+ % q) (list)))
                                        factors-of-q))]
                      (recur (persistent!
                              (dissoc!
                               (apply assoc! (transient D) key-val)
                               q))
                             (inc q))))))]
        (prime-help {} 2)))
    

    用法:

    user=> (first (primes))
    2
    user=> (second (primes))
    3
    user=> (nth (primes) 100)
    547
    user=> (take 5 (primes))
    (2 3 5 7 11)
    user=> (time (nth (primes) 10000))
    "Elapsed time: 409.052221 msecs"
    104743
    

    编辑:

    性能比较,其中 postponed-primes 使用到目前为止看到的素数队列而不是递归调用 postponed-primes

    user=> (def counts (list 200000 400000 600000 800000))
    #'user/counts
    user=> (map #(time (nth (postponed-primes) %)) counts)
    ("Elapsed time: 1822.882 msecs"
     "Elapsed time: 3985.299 msecs"
     "Elapsed time: 6916.98 msecs"
     "Elapsed time: 8710.791 msecs"
    2750161 5800139 8960467 12195263)
    user=> (map #(time (nth (postponed-primes-recursive) %)) counts)
    ("Elapsed time: 1776.843 msecs"
     "Elapsed time: 3874.125 msecs"
     "Elapsed time: 6092.79 msecs"
     "Elapsed time: 8453.017 msecs"
    2750161 5800139 8960467 12195263)
    
  • 0

    来自:http://steloflute.tistory.com/entry/Clojure-%ED%94%84%EB%A1%9C%EA%B7%B8%EB%9E%A8-%EC%B5%9C%EC%A0%81%ED%99%94

    使用Java数组

    (defmacro loopwhile [init-symbol init whilep step & body]
      `(loop [~init-symbol ~init]
         (when ~whilep ~@body (recur (+ ~init-symbol ~step)))))
    
    (defn primesUnderb [limit]
      (let [p (boolean-array limit true)]
        (loopwhile i 2 (< i (Math/sqrt limit)) 1
                   (when (aget p i)
                     (loopwhile j (* i 2) (< j limit) i (aset p j false))))
        (filter #(aget p %) (range 2 limit))))
    

    用法和速度:

    user=> (time (def p (primesUnderb 1e6)))
    "Elapsed time: 104.065891 msecs"
    
  • 21

    我刚开始使用Clojure,所以我不知道它是否好,但这是我的解决方案:

    (defn divides? [x i]
      (zero? (mod x i)))
    
    (defn factors [x]
        (flatten (map #(list % (/ x %)) (filter #(divides? x %) (range 1 (inc (Math/floor (Math/sqrt x))))))))
    
    (defn prime? [x]
      (empty? (filter #(and divides? (not= x %) (not= 1 %)) (factors x))))
    
    (def primes 
      (filter prime? (range 2 java.lang.Integer/MAX_VALUE)))
    
    (defn sum-of-primes-below [n]
      (reduce + (take-while #(< % n) primes)))
    
  • 3

    来到这个线程并寻找更快的替代已经在这里的那些,我很惊讶没有人链接到以下article by Christophe Grand

    (defn primes3 [max]
      (let [enqueue (fn [sieve n factor]
                      (let [m (+ n (+ factor factor))]
                        (if (sieve m)
                          (recur sieve m factor)
                          (assoc sieve m factor))))
            next-sieve (fn [sieve candidate]
                         (if-let [factor (sieve candidate)]
                           (-> sieve
                             (dissoc candidate)
                             (enqueue candidate factor))
                           (enqueue sieve candidate candidate)))]
        (cons 2 (vals (reduce next-sieve {} (range 3 max 2))))))
    

    除了懒惰版本:

    (defn lazy-primes3 []
      (letfn [(enqueue [sieve n step]
                (let [m (+ n step)]
                  (if (sieve m)
                    (recur sieve m step)
                    (assoc sieve m step))))
              (next-sieve [sieve candidate]
                (if-let [step (sieve candidate)]
                  (-> sieve
                    (dissoc candidate)
                    (enqueue candidate step))
                  (enqueue sieve candidate (+ candidate candidate))))
              (next-primes [sieve candidate]
                (if (sieve candidate)
                  (recur (next-sieve sieve candidate) (+ candidate 2))
                  (cons candidate 
                    (lazy-seq (next-primes (next-sieve sieve candidate) 
                                (+ candidate 2))))))]
        (cons 2 (lazy-seq (next-primes {} 3)))))
    
  • 10

    惯用语,而不是太糟糕

    (def primes
      (cons 1 (lazy-seq
                (filter (fn [i]
                          (not-any? (fn [p] (zero? (rem i p)))
                                    (take-while #(<= % (Math/sqrt i))
                                                (rest primes))))
                        (drop 2 (range))))))
    => #'user/primes
    (first (time (drop 10000 primes)))
    "Elapsed time: 0.023135 msecs"
    => 104729
    
  • 4

    已经有很多答案,但我有一个替代解决方案,可以生成无限的素数序列 . 我也对一些解决方案的标记感兴趣 .

    首先是一些Java互操作 . 以供参考:

    (defn prime-fn-1 [accuracy]
      (cons 2
        (for [i (range)
              :let [prime-candidate (-> i (* 2) (+ 3))]
              :when (.isProbablePrime (BigInteger/valueOf prime-candidate) accuracy)]
          prime-candidate)))
    

    本杰明@ https://stackoverflow.com/a/7625207/3731823primes-fn-2

    nha @ https://stackoverflow.com/a/36432061/3731823primes-fn-3

    我的实现是 primes-fn-4

    (defn primes-fn-4 []
      (let [primes-with-duplicates
             (->> (for [i (range)] (-> i (* 2) (+ 5))) ; 5, 7, 9, 11, ...
                  (reductions
                    (fn [known-primes candidate]
                      (if (->> known-primes
                               (take-while #(<= (* % %) candidate))
                               (not-any?   #(-> candidate (mod %) zero?)))
                       (conj known-primes candidate)
                       known-primes))
                    [3])     ; Our initial list of known odd primes
                  (cons [2]) ; Put in the non-odd one
                  (map (comp first rseq)))] ; O(1) lookup of the last element of the vec "known-primes"
    
        ; Ugh, ugly de-duplication :(
        (->> (map #(when (not= % %2) %) primes-with-duplicates (rest primes-with-duplicates))
             (remove nil?))))
    

    报告的数字(计算前N个素数的时间以毫秒计)是5次运行中最快的,实验之间没有JVM重启,因此您的里程可能会有所不同:

    1e6      3e6
    
    (primes-fn-1  5)     808     2664
    (primes-fn-1 10)     952     3198
    (primes-fn-1 20)    1440     4742
    (primes-fn-1 30)    1881     6030
    (primes-fn-2)       1868     5922
    (primes-fn-3)        489     1755  <-- WOW!
    (primes-fn-4)       2024     8185
    

相关问题