首页 文章

启用C 11时std :: vector performance regression

提问于
浏览
235

当我启用C 11时,我在一个小的C片段中发现了一个有趣的性能回归:

#include <vector>

struct Item
{
  int a;
  int b;
};

int main()
{
  const std::size_t num_items = 10000000;
  std::vector<Item> container;
  container.reserve(num_items);
  for (std::size_t i = 0; i < num_items; ++i) {
    container.push_back(Item());
  }
  return 0;
}

随着g(GCC)4.8.2 20131219(预发行)和C 03我得到:

milian:/tmp$ g++ -O3 main.cpp && perf stat -r 10 ./a.out

Performance counter stats for './a.out' (10 runs):

        35.206824 task-clock                #    0.988 CPUs utilized            ( +-  1.23% )
                4 context-switches          #    0.116 K/sec                    ( +-  4.38% )
                0 cpu-migrations            #    0.006 K/sec                    ( +- 66.67% )
              849 page-faults               #    0.024 M/sec                    ( +-  6.02% )
       95,693,808 cycles                    #    2.718 GHz                      ( +-  1.14% ) [49.72%]
  <not supported> stalled-cycles-frontend 
  <not supported> stalled-cycles-backend  
       95,282,359 instructions              #    1.00  insns per cycle          ( +-  0.65% ) [75.27%]
       30,104,021 branches                  #  855.062 M/sec                    ( +-  0.87% ) [77.46%]
            6,038 branch-misses             #    0.02% of all branches          ( +- 25.73% ) [75.53%]

      0.035648729 seconds time elapsed                                          ( +-  1.22% )

另一方面,在启用C 11的情况下,性能会显着下降:

milian:/tmp$ g++ -std=c++11 -O3 main.cpp && perf stat -r 10 ./a.out

Performance counter stats for './a.out' (10 runs):

        86.485313 task-clock                #    0.994 CPUs utilized            ( +-  0.50% )
                9 context-switches          #    0.104 K/sec                    ( +-  1.66% )
                2 cpu-migrations            #    0.017 K/sec                    ( +- 26.76% )
              798 page-faults               #    0.009 M/sec                    ( +-  8.54% )
      237,982,690 cycles                    #    2.752 GHz                      ( +-  0.41% ) [51.32%]
  <not supported> stalled-cycles-frontend 
  <not supported> stalled-cycles-backend  
      135,730,319 instructions              #    0.57  insns per cycle          ( +-  0.32% ) [75.77%]
       30,880,156 branches                  #  357.057 M/sec                    ( +-  0.25% ) [75.76%]
            4,188 branch-misses             #    0.01% of all branches          ( +-  7.59% ) [74.08%]

    0.087016724 seconds time elapsed                                          ( +-  0.50% )

有人可以解释一下吗?到目前为止,我的经验是,通过启用C 11,特别是STL变得更快 . 感谢移动语义 .

EDIT: 正如所建议的那样,使用 container.emplace_back(); 而不是性能与C 03版本相当 . C 03版本如何实现 push_back 的相同功能?

milian:/tmp$ g++ -std=c++11 -O3 main.cpp && perf stat -r 10 ./a.out

Performance counter stats for './a.out' (10 runs):

        36.229348 task-clock                #    0.988 CPUs utilized            ( +-  0.81% )
                4 context-switches          #    0.116 K/sec                    ( +-  3.17% )
                1 cpu-migrations            #    0.017 K/sec                    ( +- 36.85% )
              798 page-faults               #    0.022 M/sec                    ( +-  8.54% )
       94,488,818 cycles                    #    2.608 GHz                      ( +-  1.11% ) [50.44%]
  <not supported> stalled-cycles-frontend 
  <not supported> stalled-cycles-backend  
       94,851,411 instructions              #    1.00  insns per cycle          ( +-  0.98% ) [75.22%]
       30,468,562 branches                  #  840.991 M/sec                    ( +-  1.07% ) [76.71%]
            2,723 branch-misses             #    0.01% of all branches          ( +-  9.84% ) [74.81%]

   0.036678068 seconds time elapsed                                          ( +-  0.80% )

1 回答

  • 244

    我可以使用您在帖子中写下的选项在我的机器上重现您的结果 .

    However, if I also enable link time optimization (I also pass the -flto flag to gcc 4.7.2), the results are identical:

    (我正在使用 container.push_back(Item()); 编译您的原始代码)

    $ g++ -std=c++11 -O3 -flto regr.cpp && perf stat -r 10 ./a.out 
    
     Performance counter stats for './a.out' (10 runs):
    
             35.426793 task-clock                #    0.986 CPUs utilized            ( +-  1.75% )
                     4 context-switches          #    0.116 K/sec                    ( +-  5.69% )
                     0 CPU-migrations            #    0.006 K/sec                    ( +- 66.67% )
                19,801 page-faults               #    0.559 M/sec                  
            99,028,466 cycles                    #    2.795 GHz                      ( +-  1.89% ) [77.53%]
            50,721,061 stalled-cycles-frontend   #   51.22% frontend cycles idle     ( +-  3.74% ) [79.47%]
            25,585,331 stalled-cycles-backend    #   25.84% backend  cycles idle     ( +-  4.90% ) [73.07%]
           141,947,224 instructions              #    1.43  insns per cycle        
                                                 #    0.36  stalled cycles per insn  ( +-  0.52% ) [88.72%]
            37,697,368 branches                  # 1064.092 M/sec                    ( +-  0.52% ) [88.75%]
                26,700 branch-misses             #    0.07% of all branches          ( +-  3.91% ) [83.64%]
    
           0.035943226 seconds time elapsed                                          ( +-  1.79% )
    
    
    
    $ g++ -std=c++98 -O3 -flto regr.cpp && perf stat -r 10 ./a.out 
    
     Performance counter stats for './a.out' (10 runs):
    
             35.510495 task-clock                #    0.988 CPUs utilized            ( +-  2.54% )
                     4 context-switches          #    0.101 K/sec                    ( +-  7.41% )
                     0 CPU-migrations            #    0.003 K/sec                    ( +-100.00% )
                19,801 page-faults               #    0.558 M/sec                    ( +-  0.00% )
            98,463,570 cycles                    #    2.773 GHz                      ( +-  1.09% ) [77.71%]
            50,079,978 stalled-cycles-frontend   #   50.86% frontend cycles idle     ( +-  2.20% ) [79.41%]
            26,270,699 stalled-cycles-backend    #   26.68% backend  cycles idle     ( +-  8.91% ) [74.43%]
           141,427,211 instructions              #    1.44  insns per cycle        
                                                 #    0.35  stalled cycles per insn  ( +-  0.23% ) [87.66%]
            37,366,375 branches                  # 1052.263 M/sec                    ( +-  0.48% ) [88.61%]
                26,621 branch-misses             #    0.07% of all branches          ( +-  5.28% ) [83.26%]
    
           0.035953916 seconds time elapsed
    

    至于原因,需要查看生成的汇编代码( g++ -std=c++11 -O3 -S regr.cpp ) . In C++11 mode the generated code is significantly more cluttered 比C 98模式和 inlining the function
    void std::vector<Item,std::allocator<Item>>::_M_emplace_back_aux<Item>(Item&&)
    fails 在C 11模式下,默认为 inline-limit .

    This failed inline has a domino effect. 不是因为正在调用此函数(它甚至没有调用!),而是因为我们必须做好准备:如果调用它,函数argments( Item.aItem.b )必须已经在正确的位置 . 这会导致代码混乱 .

    以下是 inlining succeeds 所生成代码的相关部分:

    .L42:
        testq   %rbx, %rbx  # container$D13376$_M_impl$_M_finish
        je  .L3 #,
        movl    $0, (%rbx)  #, container$D13376$_M_impl$_M_finish_136->a
        movl    $0, 4(%rbx) #, container$D13376$_M_impl$_M_finish_136->b
    .L3:
        addq    $8, %rbx    #, container$D13376$_M_impl$_M_finish
        subq    $1, %rbp    #, ivtmp.106
        je  .L41    #,
    .L14:
        cmpq    %rbx, %rdx  # container$D13376$_M_impl$_M_finish, container$D13376$_M_impl$_M_end_of_storage
        jne .L42    #,
    

    这是一个很好的紧凑的循环 . 现在,让我们将其与 failed inline 案例进行比较:

    .L49:
        testq   %rax, %rax  # D.15772
        je  .L26    #,
        movq    16(%rsp), %rdx  # D.13379, D.13379
        movq    %rdx, (%rax)    # D.13379, *D.15772_60
    .L26:
        addq    $8, %rax    #, tmp75
        subq    $1, %rbx    #, ivtmp.117
        movq    %rax, 40(%rsp)  # tmp75, container.D.13376._M_impl._M_finish
        je  .L48    #,
    .L28:
        movq    40(%rsp), %rax  # container.D.13376._M_impl._M_finish, D.15772
        cmpq    48(%rsp), %rax  # container.D.13376._M_impl._M_end_of_storage, D.15772
        movl    $0, 16(%rsp)    #, D.13379.a
        movl    $0, 20(%rsp)    #, D.13379.b
        jne .L49    #,
        leaq    16(%rsp), %rsi  #,
        leaq    32(%rsp), %rdi  #,
        call    _ZNSt6vectorI4ItemSaIS0_EE19_M_emplace_back_auxIIS0_EEEvDpOT_   #
    

    这段代码杂乱无章,循环中的内容比前一种情况要多得多 . 在函数 call (显示最后一行)之前,必须正确放置参数:

    leaq    16(%rsp), %rsi  #,
    leaq    32(%rsp), %rdi  #,
    call    _ZNSt6vectorI4ItemSaIS0_EE19_M_emplace_back_auxIIS0_EEEvDpOT_   #
    

    即使从未实际执行过,循环也会在之前排列:

    movl    $0, 16(%rsp)    #, D.13379.a
    movl    $0, 20(%rsp)    #, D.13379.b
    

    This leads to the messy code. 如果由于内联成功没有函数 call ,我们在循环中只有2个移动指令,并且 %rsp (堆栈指针)没有混乱 . 但是,如果内联失败,我们会得到6个动作,而且我们会在 %rsp 中乱七八糟 .

    只是为了证实我的理论(注意 -finline-limit ),在C 11模式下:

    $ g++ -std=c++11 -O3 -finline-limit=105 regr.cpp && perf stat -r 10 ./a.out
    
     Performance counter stats for './a.out' (10 runs):
    
             84.739057 task-clock                #    0.993 CPUs utilized            ( +-  1.34% )
                     8 context-switches          #    0.096 K/sec                    ( +-  2.22% )
                     1 CPU-migrations            #    0.009 K/sec                    ( +- 64.01% )
                19,801 page-faults               #    0.234 M/sec                  
           266,809,312 cycles                    #    3.149 GHz                      ( +-  0.58% ) [81.20%]
           206,804,948 stalled-cycles-frontend   #   77.51% frontend cycles idle     ( +-  0.91% ) [81.25%]
           129,078,683 stalled-cycles-backend    #   48.38% backend  cycles idle     ( +-  1.37% ) [69.49%]
           183,130,306 instructions              #    0.69  insns per cycle        
                                                 #    1.13  stalled cycles per insn  ( +-  0.85% ) [85.35%]
            38,759,720 branches                  #  457.401 M/sec                    ( +-  0.29% ) [85.43%]
                24,527 branch-misses             #    0.06% of all branches          ( +-  2.66% ) [83.52%]
    
           0.085359326 seconds time elapsed                                          ( +-  1.31% )
    
     $ g++ -std=c++11 -O3 -finline-limit=106 regr.cpp && perf stat -r 10 ./a.out
    
     Performance counter stats for './a.out' (10 runs):
    
             37.790325 task-clock                #    0.990 CPUs utilized            ( +-  2.06% )
                     4 context-switches          #    0.098 K/sec                    ( +-  5.77% )
                     0 CPU-migrations            #    0.011 K/sec                    ( +- 55.28% )
                19,801 page-faults               #    0.524 M/sec                  
           104,699,973 cycles                    #    2.771 GHz                      ( +-  2.04% ) [78.91%]
            58,023,151 stalled-cycles-frontend   #   55.42% frontend cycles idle     ( +-  4.03% ) [78.88%]
            30,572,036 stalled-cycles-backend    #   29.20% backend  cycles idle     ( +-  5.31% ) [71.40%]
           140,669,773 instructions              #    1.34  insns per cycle        
                                                 #    0.41  stalled cycles per insn  ( +-  1.40% ) [88.14%]
            38,117,067 branches                  # 1008.646 M/sec                    ( +-  0.65% ) [89.38%]
                27,519 branch-misses             #    0.07% of all branches          ( +-  4.01% ) [86.16%]
    
           0.038187580 seconds time elapsed                                          ( +-  2.05% )
    

    Indeed, if we ask the compiler to try just a little bit harder to inline that function, the difference in performance goes away.


    那么从这个故事中拿走了什么呢?内联失败可能会花费你很多,你应该充分利用编译器功能: I can only recommend link time optimization. 它为我的程序提供了显着的性能提升(高达2.5倍),我需要做的就是传递 -flto 标志 . 这是一个非常好的交易! ;)

    但是,我不建议使用inline关键字删除代码;让编译器决定做什么 . (无论如何,优化器都可以将内联关键字视为空格 . )


    好问题,1!

相关问题