首页 文章

如何在scikit-learn中用管道调整自定义内核函数的参数

提问于
浏览
13

目前我已经使用def函数成功定义了一个自定义内核函数(预先计算内核矩阵),现在我使用GridSearchCV函数来获取最佳参数 .

因此,在自定义内核函数中,总共有2个参数将被调整(即下例中的gamm和sea_gamma),而且对于SVR模型,还必须调整cost c参数 . 但到目前为止,我可以使用GridSearchCV调整成本c参数 - >请参考下面的第一部分:示例 .

我搜索了一些类似的解决方案,例如:

Is it possible to tune parameters with grid search for custom kernels in scikit-learn?

它说“实现这一目标的一种方法是使用Pipeline,SVC(kernel = 'precomputed')并将自定义内核函数包装为sklearn估计器(BaseEstimator和TransformerMixin的子类) . ”但是这仍然不同于我的案例和问题但是,我尝试基于此解决方案解决问题,但到目前为止它没有打印任何输出,甚至是任何错误 . - >请参考第二部分:管道解决方案 .

第一部分:示例 - >我在网格搜索中的原始自定义内核和评分方法是:

import numpy as np
    import pandas as pd
    import sklearn.svm as svm
    from sklearn import preprocessing,svm, datasets
    from sklearn.preprocessing import StandardScaler,  MaxAbsScaler
    from sklearn.metrics.pairwise import rbf_kernel
    from sklearn.grid_search import GridSearchCV
    from sklearn.svm import SVR
    from sklearn.pipeline import Pipeline
    from sklearn.metrics.scorer import make_scorer

    # weighting the vectors
    def distance_scale(X,Y):
        K = np.zeros((X.shape[0],Y.shape[0]))
        gamma_sea =192

        for i in range(X.shape[0]):
            for j in range(Y.shape[0]):
                dis = min(np.abs(X[i]-Y[j]),1-np.abs(X[i]-Y[j]))
                K[i,j] = np.exp(-gamma_sea*dis**2)
        return K

    # custom RBF kernel : kernel matrix calculation 
    def sea_rbf(X,Y):
        gam=1
        t1 = X[:, 5:6]
        t2 = Y[:, 5:6]
        X = X[:, 0:5]
        Y = Y[:, 0:5]
        d = distance_scale(t1,t2)
        return rbf_kernel(X,Y,gamma=gam)*d

    def my_custom_loss_func(y_true, y_pred):
        error=np.abs((y_true - y_pred)/y_true)
        return np.mean(error)*100

    my_scorer = make_scorer(my_custom_loss_func,greater_is_better=False)


    # Generate sample data 
    X_train=np.random.random((100,6))
    y_train=np.random.random((100,1))
    X_test=np.random.random((40,6))
    y_test=np.random.random((40,1))
    y_train=np.ravel(y_train)
    y_test=np.ravel(y_test)

    # scale the input and output in training data set, also scale the input                                         
    #in testing data set
    max_scale = preprocessing.MaxAbsScaler().fit(X_train)
    X_train_max = max_scale.transform(X_train)
    X_test_max = max_scale.transform(X_test)
    max_scale_y = preprocessing.MaxAbsScaler().fit(y_train)
    y_train_max = max_scale_y.transform(y_train)

    #precompute the kernel matrix
    gam=sea_rbf(X_train_max,X_train_max)

    #grid search for the model with the custom scoring method, but can only tune the *cost c* parameter in this case.
    clf= GridSearchCV(SVR(kernel='precomputed'),
                       scoring=my_scorer,
                       cv=5,
                       param_grid={"C": [0.1,1,2,3,4,5]
                                   })

    clf.fit(gam, y_train_max)
    print(clf.best_params_)
    print(clf.best_score_)
    print(clf.grid_scores_)

第二部分:管道解决方案

from __future__ import print_function
from __future__ import division

import sys

import sklearn
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline

# Wrapper class for the custom kernel RBF_kernel
class RBF2Kernel(BaseEstimator,TransformerMixin):

    def __init__(self, gamma=1,sea_gamma=20):
        super(RBF2Kernel,self).__init__()
        self.gamma = gamma
        self.sea_gamma = sea_gamma

        def fit(self, X, y=None, **fit_params):
        return self
   #calculate the kernel matrix
    def transform(self, X):
        self.a_train_ = X[:, 0:5]
        self.b_train_ = X[:, 0:5]
        self.t1_train_ = X[:, 5:6]
        self.t2_train_ = X[:, 5:6]
        sea=16
        K = np.zeros((t1.shape[0],t2.shape[0]))

        for i in range(self.t1_train_.shape[0]):
             for j in range(self.t2_train_.shape[0]):
                    dis = min(np.abs(self.t1_train_[i]*sea-        self.t2_train_[j]*sea),sea-np.abs(self.t1_train_[i]*sea-self.t2_train_[j]*sea))
                    K[i,j] = np.exp(-self.gamma_sea *dis**2)
        return K

        return rbf_kernel(self.a_train_ , self.b_train_, gamma=self.gamma)*K

def main():

    print('python: {}'.format(sys.version))
    print('numpy: {}'.format(np.__version__))
    print('sklearn: {}'.format(sklearn.__version__))

    # Generate sample data
    X_train=np.random.random((100,6))
    y_train=np.random.random((100,1))
    X_test=np.random.random((40,6))
    y_test=np.random.random((40,1))
    y_train=np.ravel(y_train)
    y_test=np.ravel(y_test)


    # Create a pipeline where our custom predefined kernel RBF2Kernel
    # is run before SVR.

    pipe = Pipeline([
        ('sc', MaxAbsScaler()),    
        ('rbf2', RBF2Kernel()),
        ('svm', SVR()),
    ])

    # Set the parameter 'gamma' of our custom kernel by
    # using the 'estimator__param' syntax.
    cv_params = dict([
        ('rbf2__gamma', 10.0**np.arange(-2,2)),
        ('rbf2__sea_gamma', 10.0**np.arange(-2,2)),
        ('svm__kernel', ['precomputed']),
        ('svm__C', 10.0**np.arange(-2,2)),
    ])

    # Do grid search to get the best parameter value of 'gamma'.
    # here i am also trying to tune the parameters of the custom kernel
    model = GridSearchCV(pipe, cv_params, verbose=1, n_jobs=-1,scoring=my_scorer)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    acc_test = mean_absolute_error(y_test, y_pred)
    mape_100 =  my_custom_loss_func (y_test, y_pred)

    print("Test accuracy: {}".format(acc_test))
    print("mape_100: {}".format(mape_100))
    print("Best params:")
    print(model.best_params_)
    print(model.grid_scores_)

if __name__ == '__main__':
    main()

总结如下:

  • 该示例运行良好,但它可以调整默认参数(在这种情况下成本参数)

  • 我想调整自定义内核中的额外参数,我已将其定义为第一部分中的函数 .

  • scikit-learn或python对我来说仍然是新的,如果解释不清楚,如果您对细节有任何疑问,请告诉我 .

非常感谢您的阅读,希望长篇大论会让您更加清晰,欢迎所有建议:)

2 回答

  • 1

    使用函数包装模型:

    def GBC(self):
            model = GradientBoostingRegressor()
            p = [{'learning_rate':[[0.0005,0.01,0.02,0.03]],'n_estimators':[[for i in range(1,100)]],'max_depth':[[4]]}]
            return model,p
    

    然后通过参数网格用内核测试它:

    def kernel(self,model,p):
            parameter = ParameterGrid(p)
            clf = GridSearchCV(model, parameter, cv=5, scoring='neg_mean_squared_error',n_jobs=2)
            clf.fit(X,Y)
    

    使用这种方法可以在一个不同的函数上管理函数的种类及其超参数集,直接在main中调用函数

    a = the_class()
    a.kernel(a.GBC())
    
  • 2

    从稍微不同的角度攻击问题 - 如何使用auto-sklearn自动参数调整?它是sklearn的直接替代品,通常它比手动调整参数做得更好 .

相关问题